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This paper discusses the general idea that in systems where a flexible solid is 
coupled with a flowing fluid three different types of instability are possible. 
These were originally designated by Brooke Benjamin (1960) as ‘class A’, 
‘ class B ’ and ‘ Kelvin-Helmholtz ’ instability, and their collective significance 
has been clarified recently by Landahl(1962). Class A and class B disturbances 
are essentially oscillations involving conservative energy-exchanges between the 
fluid and solid, but their stability is determined by the net effect of irreversible 
processes, which include dissipation and energy-transfer to the solid by non- 
conservative hydrodynamic forces. Dissipation in the solid tends to stabilize 
class B disturbances but to destabilize class A ones. Class C instability (i.e. the 
‘ Kelvin-Helmholtz ’ type) occurs when conservative hydrodynamic forces cause 
a unidirectional transfer of energy to the solid. 

In  5 2 this idea is examined fundamentally by way of the Lagrangian method 
of generalized co-ordinates, and in 8 3 the example of inviscid-fluid flow past a 
flexible plane boundary is considered. The treatment of this example amplifies 
the work of Landahl, in particular by including the effect of non-conservative 
forces of the kind investigated by Miles in his series of papers on water-wave 
generation by wind. 

1. Introduction 
In  the analysis by Brooke Benjamin (1960) of the stability of laminar boundary 

layers over flexible surfaces, it  was shown that three categories of instability 
may be distinguished, which were named class A, class B, and Kelvin-Helmholtz 
instability, respectively. In  a recent paper on the same problem Landahl (1962) 
has considerably elucidated this scheme of classification by providing a simple 
physical interpretation of the distinctive factors among the three types of 
unstable disturbance, and he has shown that the underlying principles are not 
restricted to the particular problem of viscous boundary-layer instability in 
which they first came to light. Specifically, he showed them still to apply when 
the fluid is inviscid and the flow is uniform without any boundary layer. In  the 
present paper these principles will be explored further on the simple lines which 
have already led to Landahl’s important discoveries. 

A remarkable property of class A disturbances is that dissipation in the solid 
has a destabilizing effect on them. In view of the claim by Kramer (1960) that 
his method of ‘distributed damping ’ provided boundary-layer stabilization, this 
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property was discovered with some surprise in the treatment of the corresponding 
theoretical problem, where the class A disturbances were identified as Tollmien- 
Schlichting waves modified by the response of the flexible boundary to the 
attendant pressure fluctuations. But Landahl’s investigation has shown that the 
latter interpretation is incidental and the destabilizing influence of dissipation 
is common to the simpler example of class A disturbances with which he illu- 
strated their fundamental nature. According to  the general definition to be 
emphasized in this paper, both class A and class B disturbances are oscillations 
which, in the absence of irreversible processes such as dissipation and the con- 
version of energy by Reynolds stresses, would be sustained at constant amplitude. 
The distinctive attribute of class A oscillations is that their development entails 
a reduction, proportional to amplitude squared, in the total-energy level of the 
complete system; and since a loss of energy by the system can therefore be 
compensated by an increase of amplitude, this readily explains the way in which 
dissipation affects them. 

[The stability problem for laminar boundary layers over flexible surfaces has 
also been studied theoretically by Betchov (1960), Boggs & Tokita (1960) and 
Hains & Price (1962), who appear to have considered only the class A wave 
modes, and by Nonweiler (1961) who dealt more comprehensively with particular 
examples of a non-dissipative surface. In the related context of panel flutter, 
cases where structural damping has an unfavourable effect on stability have been 
demonstrated by Hedgepeth, Budiansky & Leonard ( 1954), Nelson & Cunning- 
ham (1955), Johns & Parks (1960) and others.] 

The fundamental property of class B oscillations is that their initiation entails 
a raise in energy level,? the opposite of the previous case. Accordingly the 
attenuating effect of dissipation on them is easily understood.? However, these 
oscillations tend to be amplified by irreversible energy-transfer (i.e. brought 
about by non-conservative forces) from the fluid to the solid, and such a process 
leaves the total-energy level unchanged. In  general, therefore, the total energy 
relative to the quiescent state is not a suitable measure of the extent to which 
the system is disturbed, except perhaps in a period immediately following the 
initiation of a disturbance before a significant amount of energy is converted 
by the irreversible processes. To cover this aspect we shall introduce the concept 
of the ‘activation energy’, which is the instantaneous level of the conservative 
energy-exchanges associated with class A or class B oscillations. As an oscillation 
amplifies or attenuates, the activation energy departs from the level of the initial 
excitation by an amount which represents the balance of energy converted 
irreversibly by the disturbance. This concept is apparently new, but it seems 
indispensible to a simple collective interpretation of class A and class B properties. 

In  their treatments of the problem of boundary-layer stability, Brooke 
Benjamin and Landahl identified the class B disturbances with ‘free surface 
waves’ which could still propagate along the boundary if the fluid were absent, 

7 This compares with the familiar case of stable oscillations in a ~ i t e  conservative 
system whose quiescent state has zero kinetic energy and minimum potential energy; but 
note that the present case is special in that the quiescent state of a system including a flow 
may have unbounded kinetic energy. 
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but which are modified by the reaction of the disturbed flow. These waves pose 
essentially the same theoretical problQm as the one formulated by Miles (1957, 
1959, 1962a, b) to explain the generation of water waves by wind. His theory 
shows that when an inviscid shear flow is disturbed by a sinusoidal wave travel- 
ling along the boundary in the same direction, the pressure perturbation at the 
boundary can have a component in phase with the wave slope; this arises when 
there exists above the boundary a ‘critical height’ a t  which the flow velocity 
equals the wave velocity, and the curvature of the flow-velocity distribution with 
height is negative there. Work is done on the moving surface by this pressure 
component, and so a wave will be sustained at  constant amplitude on a dissipa- 
tive boundary (specifically a water surface subject to viscous stresses in Miles’s 
model) if the rate of energy-transfer across it balances the rate of dissipation. 
The energy supply derives, of course, from the kinetic energy of the mean shear 
flow, the process of abstraction being associated with a constant Reynolds stress 
at all heights up to the critical. A very informative physical interpretation of 
Miles’s theory has been given recently by Lighthill (1962), who explained the 
energy-transfer mechanism in terms of processes operating in the region of the 
critical height. 

Although the case of ‘neutral stability’ described above has been the only one 
treated precisely by Miles, and also by Lighthill, a crucial implication of his theory 
is that a wave will grow if the dissipation is insufficient to balance the energy- 
transfer to a corresponding neutral wave. While being clearly correct, of course, 
for Miles’s particular model of a water-air interface, this interpretation of neutral 
stability is by no means obviously forthcoming in a more general view of this 
type of problem. Indeed, just the opposite interpretation holds for class A waves, 
and even for class B ones the exact significance of the energy-transfer according 
t o  Miles’s analysis is not immediately evident in other than the neutral case. 

To be specific about the latter point, we recall that the rate of energy-transfer 
to a neutral wave is Wn = c p , a ~ / a x  per unit surface area (see 5 3 for notation; 
the suffix n here implies evaluation of W for c real), and if D is the dissipation per 
unit area then Wn = D is the condition of neutral stability which justifies exactly 
the basis for the calculation of W,. But, with the same m,, Miles’s theory proceeds 
to use the approximation that m, - D ( > 0) is the rate of accumulation of energy 
by the water wave, although strictly the pressure component in phase with the 
wave elevation (comprising the conservative part of the hydrodynamic forces) 
also does some work on a growing wave, so that is not the complete energy- 
transfer.? It has been pointed out by Miles (1962b, p. 81) that the error in this 
approximation is of the same order of magnitude as the ratio of the air and water 
densities, and so is negligible. But what is the precise physical significance of 
Wn - D in this case when W? still has the distinctive meaning accorded by Miles’s 
analysis? And how does W, - D relate to the wave growth when the densities 
of the two parts of the system are comparable, so that the approximation in 
question breaks down? This basic aspect of Miles’s theory will be clarified in the 
present paper. 

generation as reported by Lamb (1932, $348). 
-f This approximation was also used in Jeffreys’s ‘sheltering theory’ of water-wave 
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The third type of instability, to be called here class C, was previously named 
after Kelvin and Helmholtz whose analyses of the stability of contiguous uniform 
streams with unequal velocities gave the first example of it (Lamb 1932, $5 232, 
268). Unlike the first two, this type of instability is virtually independent of irre- 
versible effects in the system if they are small. It is thus a consequence of the con- 
servative forces acting on a small disturbance, being analogous to the instability 
of a conservative system in static equilibrium when the potential energy is a 
maximum. In the case of flow past a plane boundary, class C instability aIways 
arises ultimately if the flexibility of the boundary is made large enough, specific- 
ally so that the hydrodynamic suction in phase with a wavy deformation out- 
weighs the restoring forces for all values of the wave speed. Analogous examples 
in other solid-fluid systems include the buckling of flexible pipes conveying fluid 
(Brooke Benjamin 1961) and the yawing instability of a towed flexible body 
(Hawthorne 1961). 

The contribution of this paper is in two parts. First, in Q 2, the three types of 
instability are illustrated in a general way by means of the Lagrangian method 
applied to an unspecified system, wherein a flexible solid is initially in equili- 
brium under the influence of an infinite steady flow of inviscid fluid. Here the 
principal aim is to emphasize that instabilities of many systems other than those 
with a plane solid-fluid interface may be classified in the same way. For instance, 
the generalized theoretical model includes the case of towed finite bodies like the 
‘Dracone’ flexible oil-barge (Hawthorne 1961) and also systems of elastic pipes, 
or articulated rigid ones, through which fluid is pumped (Brooke Benjamin 1961). 
A hypothetical ‘normal mode ’ of disturbance from equilibrium is considered, 
thus requiring only a single generalized co-ordinate to represent the energy of 
the solid and the energy-transfer from the fluid, and so the analysis is extremely 
simple. This approach is intended merely to provide an overall interpretation of 
possible behaviour in a variety of systems, and of course it evades the far more 
demanding task of formulating and solving the complete dynamical equations 
for any particular system. 

In 3 3 the problem of semi-infinite inviscid flow past a flexible plane boundary 
is reconsidered on the lines of Landahl’s discussion (1962, Q 7). The main points 
of his analysis are covered again with only minor elaborations, the importance 
of these points being considered sufficient to justify this recapitulation, but 
one significant modification is introduced. Although the direct effects of viscosity 
on a wavy disturbance are again ignored, the flow is assumed to feature a thin 
boundary layer which gives rise to an irreversible energy -transfer mechanism of 
the kind discovered by Miles. It will be definitely established, confirming 
Landahl’s prediction, that this mechanism has a destabilizing influence only on 
class B waves and, rather surprisingly, it tends to stabilize the class A waves 
which can also exist in this type of system. 

2. Illustration in terms of generalized dynamics 
We consider a generic system in which a slightly dissipative flexible solid is 

coupled with an infinite flow of frictionless fluid. From an initial state of equili- 
brium the system is disturbed infinitesimally in a particular normal mode, the 
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magnitude of the deformation being measured as a function of time by a 
generalized co-ordinate q(t) .  For the disturbance in the solid, the kinetic energy, 
potential energy and Rayleigh dissipation function are given respectively by 

T = 3 ~ @ 2 ,  V = 4hq2, R = 3 ~ q 2 ,  (2.1) 

where the inertia, stiffness and friction coefficients p, h and K are positive 
constants. The Lagrangian dynamical equation for the solid is therefore 

pq+K@+hq = Q, (2.3) 

where Q is the ‘generalized-force component ’ which represents the action of the 
fluid upon the solid for the normal mode in question (cf. Brooke Benjamin 1961, 
p. 464). 

For the purpose of illustration it is supposed that Q takes the form 

Q = M q + K q + A q ,  (2.3) 

in which M ,  K and A are real constants. This assumption is simply made ad hoc 
to provide the properties demonstrated below, but there appear to be many 
examples which bear it out (see, for example Brooke Benjamin 1961, $5 3.6, 3.2). 
For travelling-wave disturbances, however, Q takes a slightly different form and 
the modification will be explained later. 

It is worth noting that a non-conservative part of the hydrodynamic forces, 
as represented by the term with coefficient K in (2.3), is a common feature of 
systems in which aJinite flexible solid is coupled with an infinite flow and is free 
to make lateral displacements at its downstream end (cf. the analysis by Lighthill 
(1960) of a slender fish’s swimming motions; also Brooke Benjamin (1961,s 2.3)). 
It has already been noted in 3 1 that, by a quite differant process, wavy dis- 
turbances of a shear flow also give rise to non-conservative forces. 

Now, if the disturbance is initiated by external forces applied impulsively 
to the solid, say just after t = 0, the total work done on the solid by the hydro- 
dynamic forces is given by 

since q(0) = 0 and @(O) = 0. This must also be the energy lost by the fluid (from 
the unbounded store of kinetic energy possessed by the primary flow), so that 

is the total energy of the whole system relative to the original quiescent state. 
Energy may be dissipated only in the solid since the fluid is frictionless, and so 
we have dbldt  = - 2R ( 6 0) or, upon integration, 

where 8, is the energy level immediately after the initial excitation. 
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As compared with the total energy, which is not directly changed by the 
irreversible energy-transfer proportional to K ,  a more useful measure of the 
degree of excitation is what we may suitably term the 'activation energy' E,  
which is the sum of € and the energy transferred to the solid by the non-con- 
servative hydrodynamic forces. Thus we consider 

E = b + K  q2dt 

(2.7) 

According to (2.7) E is also interpretable as the energy, relative to that of the 
quiescent system, which is involved in conseruative exchanges between kinetic 
and potential forms (and between the two parts of the system) during an oscjl- 
latory motion. Finally, combining (2.6) and (2.7), we get the equation 

1: 
= $(,u - M )  qz + $(A  - A) 9'. 

(2.8) 

the right-hand side of which is the difference between the non-conservative 
energy-transfer to the solid and the dissipation within it, and so represents the 
balance of energy converted irreversibly by the disturbance. Note, however, 
that this is not the actual gain of energy by the solid, nor the average gain during 
an oscillation of gradually varying amplitude, because obviously the conser- 
vative hydrodynamic forces may also contribute to the energy-transfer. [Equa- 
tion (2.8) is, of course, a formal consequence of (2.2) and (2.3), being given 
immediately by integration after multiplication by q. But the present indirect 
derivation serves to prepare a comprehensive physical explanation for the 
properties of the system.] 

When the dynamical equation given by combining (2.2) and ( 2 . 3 )  is solved, 
the following three cases may be distinguished. We assume that K and K are 
both small in comparison with I (p  - 1M) ( A  - A) I. 

(i) p > M and A > A 
In  the absence of dissipation and of non-conservative hydrodynamic forces 
(K = 0 and h' = 0), the solution describes a simple-harmonic motion at the 
frequency 

(2.9) 

and one finds that Q = E = +(A - A) Q 2 ,  where Q is the amplitude. Thus the total- 
energy level is positive. 

For finite yet small K and li' the frequency is little changed, but the oscillation 
is damped or amplified accordingly as K $ K. The condition of instability is 
therefore that R > K ,  which of course means that the rate of irreversible energy- 
transfer from the fluid to the solid exceeds the mean rate of dissipation. If its 
direction is changed ( K  < 0 ) ,  the irreversible energy-transfer has a damping 
effect additional to that of the dissipation. 

The instability for K > K is readily explained in physical terms by reference 
to (2.8). The activation energy, which is given very closely by E = $(A-A) Q2, 
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must be positive to begin with (i.e. a positive amount of energy 8, must be added 
to the system in generating the disturbance), and if K > K it  steadily increases 
even though the total energy d steadily decreases according to (2.6). The energy 
of the initial excitation, &,, is eventually lost by the system and & becomes 
negative; but the disturbance grows because this loss is more than compensated 
by the transfer to the disturbance of energy from the infinite store in the fluid. 

This case exemplifies class B instability in all essential respects, and the 
instability criterion clearly corresponds to the criterion for wave growth in 
Miles’s theory. 

(ii) p < M and h > A, or ,u > M and h < A 
The solution is q = a sinh ( ~ t  + b cosh crt, (2.10) 

with C+ = (A-h)/(,a- M )  > 0, and now K and K have no qualitative effect on 
the solution if they are small. Thus, the system is vigorously unstable irrespec- 
tive of the action of the non-conservative forces. 

For K and K small the activation energy is very nearly 

E = $(A-A) (a2-b2).  (2.11) 

This can be either positive or negative, but the more important fact is that it  
does not vary as the instability develops. The physical interpretation of the 
instability is that there is a unidirectional transfer of energy from the fluid to 
the solid, being effected by conservative forces and so leaving the activation 
energy unchanged. Though as before the total-energy level will be gradually 
reduced by dissipation, this factor is now unimportant since the redistribution 
of energy between the two parts of the system occurs much more rapidly. 

This case typifies class C (or ‘ Kelvin-Helmholtz ’) instability. 

(iii) p < M and h < A 
For K = 0 and K = 0 the solution again describes a simple-harmonic motion at 
the frequency w given by (2.9), but now the energy level of the disturbance is 
& = - +(A- A) 8 2  and so is negative. This means simply that the absolute energy 
level of the whole system must be reduced in the process of creating a free oscilla- 
tion: that is, the system must be allowed to do work against the external forces 
which provide the initial excitation. 

For small finite K and K the oscillation is amplified if K > K and damped if 
K < K.  Thus dissipation and irreversible energy-transfer from the fluid to the 
solid have opposite effects in this case as compared with (i). In particular, the 
effect of dissipation is always destabilizing. 

An interpretation of the physical mechanism of instability is again indicated 
by (2.8). The activation energy E =+ - $(A - A )  g2 is negative when a disturbance 
is first created (i.e. 8, < 0 ) ,  and the amplitude of the oscillation is made pro- 
gressively larger by increases in the negative magnitude of E ,  which occur when 
K > K.  The significance of E in the present case is perhaps made clearest as 
follows. Suppose that the irreversible processes were suddenly stopped so that 
the oscillation continued at constant amplitude 8. Then clearly E is what the 
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absolute energy level of the system would be if the same oscillation had been 
excited by external forces, and we know from two paragraphs above that E 
as thus defined is essentially negative, increasing in magnitude with q. Hence 
we readily appreciate that dissipation is destabilizing since it lowers the absolute 
energy level. Again, irreversible energy-transfer to the solid (K > 0) tends to 
stabilize since according to the definition (2.7) it  raises E above the absolute 
energy level, so bringing the 'excitation level ' closer to the level of the quiescent 
system. 

This case exemplifies class A instability in all essential respects. 

Though the preceding theoretical model provides the simplest demonstration 
of essentials, there are evidently many cases to which it does not apply preciseIy 
yet which admit the same general interpretation regarding the classification of 
instabilities. We now note an extension of our Lagrangian formulation to a 
category of travelling-wave disturbances which includes the case to be con- 
sidered in § 3. 

Suppose that the system is both uniform and unbounded in the flow direction 
x, and that it is disturbed by a sinusoidal wave travelling in this direction. The 
motion within a fixed interval of x may be considered to comprise two modes 
q = ql(t) cos ax and q = q2(t) sin ax, in which q1 and q2 are oscillations in quadra- 
ture. In  the absence of the fluid q1 and q2 would independently satisfy the same 
Lagrangian equation, but through the action of the flow there may be coupling 
between the two modes. To represent this effect q is taken to be complex, on the 
understanding that the real part of q eiKX describes the physical disturbance. 
As before the Lagrangian equation for the solid under the influence of the flow is 

( p - M ) q + ( K - K ) @ + ( h - A ) q  = 0, (2.12) 

but whereas p, K ,  A, M and A are again real constants, K may now be complex. 
(We can assume that in general M will be real and negative in view of the fact 
that - M is the virtual-mass coefficient for small displacements in the modes 
considered. And it can be assumed that the hydrodynamic pressure or suction 
on the solid will be in phase with static displacements in these modes, which 
means that A will be real.) 

Corresponding to (2.4), the energy-transfer W averaged over x is given by the 
real part of the integral of &&*a, where Q* is the complex conjugate of Q .  The term 
iKiq in Q therefore makes no contribution to W ,  and so the expressions for the 
energies & and E are the same as before except that K is replaced by K,. Thus 
dE/dt  takes the sign of K, - K .  

Representing the two solutions of (2.12) in the form qe-ivt, we get 

where R = {4(p-M) (A-A)+ ( K - K , ) ~ ) / K ! .  

Instability is indicated by v having a positive imaginary part. 
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The following three cases may now be distinguished: ( 1 )  When R > 0, both 
solutions are subject to the same instability condition K,  > K (i.e. dE/dt > 0 ) ,  
and so both are class B. (2) When - 1 < R < 0, one solution is again class B but 
the other is class A, being unstable if K > K,. (3) When R < - 1,  the radical in 
(2.13) has a large imaginary part so that instability of the class C (or 'Helvin- 
Helmholtz ') type occurs. 

This situation will be examined more fully in the example which follows. 

FIGURE 1. Definition sketch showing the undisturbed velocit,y profile. 

3. Stability of a plane interface between a flexible solid and a parallel 
flow of inviscid fluid 

Considering a travelling-wave disturbance, we take the equation of the 
deformed interface (see figure 1) to be 

y = y(x, t )  = Re {@ eta+ct)), (3.1) 
and regard a@ as infinitesimal. Our object is to find the complex wave-velocity 
c = c ,+ic ,  corresponding to a given real wave-number a, and in particular to 
examine the possibilities of the condition ci > 0 indicative of instability. A rela- 
tionship for c will be obtained by equating the pressure p, exerted by the fluid 
on the interface and the normal stress generated in the solid by the deformation, 
the dynamic resistance of the solid boundary being represented by three gross 
parameters. No shear stress is exerted by the inviscid fluid, and the condition 
of vanishing shear stress at the solid boundary does not enter the present 
analysis explicitly, although it is evidently a factor upon which the resistance 
parameters might depend. 

When the primary flow is taken to have a uniform velocity U,, the surface 
pressure is found by irrotational-flow theory to be 

p ,  = -p(/T,-c)Zay, (3 .2 )  

where p is the fluid density. (The weight of the fluid is ignored in the present 
analysis, which is very well justified if the fluid is air; but otherwise, if the inter- 
face is horizontal, there is merely an addition -pgy to (3.2).) To make a rather 
more realistic model, however, we suppose there to be a thin boundary layer 
over which the primary velocity U(y) increases steadily from zero at the un- 
disturbed interface y = 0 and approaches the value U, asymptotically, but we 
assume that the displacement thickness 6" is much smaller than the wavelength 
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2 7 ~ 1 ~ .  Then (3.2) is a good approximation to the component of pressure in phase 
with the wave elevation (Brooke Benjamin 1959, 5 7) ,  but if 0 < c < U, there is 
also a component in phase with the wave slope. This second pressure com- 
ponent arising from non-uniformity of the flow has central importance in Miles’s 
theory (1957, 1959,1962 a, b)  of water-wave generation by wind, which considers 
that for a neutral wave (ci = 0) the mean energy-transfer to the water surface 
is proportional to it. We accordingly write 

p s  =p(- (~ i , -c )2+iSc}a) ; I ;  (3.3) 

and since the second component is comparatively small (see below) we shalI 
treat S as a parameter in the relationships derived to determine c. 

t 

c i  uo 
FIGURE 2. Values of the dimensionless ratio S/U,a8* for a laminar 

boundary layer with zero pressure gradient. 

For a thin boundary layer and c real it  can be shown (see Brooke Benjamin 
1959, equation (7.33)) that an approximation to Sc of the same standing as the 
present approximation to the in-phase component is 

s c  = - zra( Ci, - c)4 u:/ UL3, (3.4) 

where UL and U: are derivatives of U(y) evaluated at  the ‘ critical height ’ where 
U = c. Hence the ratio Xc/(Uo - c ) ~  of the magnitudes of the terms in (3.3) is 
deduced to be O(a8*) and thus very small according to the assumption made 
above. Figure 2 gives values of S/ti,a8* calculated from (3.4) for the laminar 
boundary layer along a plane surface (Schlichting 1955, Ch. VII, §f) and plotted 
as a function of clU,. When c is complex, as will be considered presently, this 
approximation to the pressure component arising from the boundary layer is 
still good if c, is substituted for c, provided that ci < c,. 
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The normal reaction of the solid boundary to the deformation (3.1) may be 
represented as the sum of a resilient,. an inertial and a frictional component; 
thus, for the direct stress acting inwards (the direction of negative y), we put 

- mac2 - ikmac) ay.  (3.5) 

Here P denotes the tension per unit span of an equivalent membrane, m the 
equivalent mass per unit surface area, and kma the frictional resistance. This 
representation is valid for a variety of systems, perhaps the simplest being it 
membrane under tension and a thin plate (F = a2 xjexural rigidity). [It also 
applies to the surface of deep water, provided the effects of surface currents 
caused by wind are neglected (as they were by Miles). For this case one takes 
F = pwg/a2, m = p,/a and k = 4vwa, where pw is the density and vW the kine- 
matic viscosity of water. For the corresponding case where the density p of the 
fluid above the interface is comparable with the density pw of a fluid below, 
inclusion of the weight of the upper fluid leads to a form of (3.5) with 

Fa2 = (P,-P)%l 
Note that the quantity within the parentheses on the right-hand side of (3.5) 
is equivalent to the dynamic-stiffness coe6cient p defined by Brooke Benjamin 
(1960)) and to - i c /  Y in the notation used by Landahl (1962). 

The dynamical equation for the disturbance is obtained by equating (3.3) 
and (3.5). Putting ci = F/m,  we get 

( U, - c ) ~  - ~ S C  = <(c: - c2 - ikc), (3.6) 
where < = ma/p is a dimensionless ratio. Note that in the absence of the fluid and 
of friction in the solid the solution of (3.6) is c = k c,. Thus co is the speed of free 
surface waves in the solid. 

Leaving the dependence of S on c implicit, we may regard (3.6) as a quadratic 
in c ,  the solution of which is 

[ U, - ti( <k - S )  ? ,/{<( < + 1) c; - <U; - *( <k - ~ 9 ) ~  - i (  <k - 8) &}I. (3.7) 

Since S is very much smaller than U,, an accurate explicit approximation to c 
may be obtained from (3.7) by evaluating X at the figure for c given when S = 0 
in this expression. We shall assume for simplicity that <k also is small in com- 
parison with Uo (i.e. frictional resistance < pU,). 

Following Landahl (1962) we may distinguish three cases in which (3.7) 
provides different interpretations: 

1 c = -  
< + I  

(3.8) I (i) u; < cc:, 
(ii) 

(iii) U; > (c+ 1 ) ~ : .  
<c: < U,Z < (<+ l ) c &  

It should first be noted that a vigorous instability of the class C, Kelvin- 
Helmholtz type occurs in case (iii), because then the radical in (3.7) is mainly 
imaginary (becoming purely imaginary if k = 0 and S = 0) and so one solution 
has a large positive imaginary part ci. 

To illustrate cases (i) and (ii) the two values of c given by (3.7), say a and b,  
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may be approximated to the first order in (@ - S ) ,  which is taken to be small in 
comparison with u defined below. Thus we consider 

where u = &(c+ 1)C,"-t;U,"). 
The alternative signs are minus for a and plus for b, and it is understood tha t  5' 
is evaluated at  c = a, and c = b, respectively. 

In  case (i) we have that u > U,, and so a, < 0. For a wave thus travelling in the 
direction opposite to the flow, there is no 'critical height ' and consequently 
S = 0; hence the disturbance is damped if k > 0. The wave with c = b is damped 
only if gk > S,, and it appears that the interface is unstable if Sb > ck. This 
instability clearly is of the class B type. 

[Note that if 5 is very large, yet U,/co is O(l ) ,  (3.9) gives 

b, + CO - (2 < c O ) - ~  (C& - c O ) ~ ,  

which accords with one of the conditions assumed in Miles's theory. He supposed 
that a water wave acted upon by moderate wind has a speed very close to the 
value c, = (g/a)* for a wave on a free surface, and this assumption is amply 
justified-at least for wind speeds not much in excess of c,by the fact that 
6 = p,/p + 800 for his model. The condition for wave growth considered by 
Miles is equivalent to the present instability condition Sb > ck, and it is worth 
noting that the wind speed U, must exceed c, to give a non-zero S and so make 
wave growth possible. We note also that the approximation to the rate of growth 
used by Miles and by Jeffreys, as was mentioned in $1, is equivalent to the 
approxmation b, = &(c-l,Sb - k) obtained from (3.9) when c B 1 and so u B U,.] 

In  case (ii) we have that 0 < u < U,, and so both a, and b, are positive. The 
instability condition for the wave with c = b is again that Sb > ck, but now a new 
feature arises in that the slower-travelling wave has class A properties. For we 
see from (3.9) that the wave is unstable if [k > S,, which means that friction 
and Miles's out-of-phase pressure component have exchanged their previous 
roles, the former now being destabilizing and the latter stabilizing. Since S --f 0 
for c, -+ 0 (see figure 2) ,  the condition for incipience of class A instability as the 
flow velocity is gradually raised in a dissipative system is that 

U i  = cc;, i.e. pUi  = Pa, (3.10) 

which gives a, = 0. This condition means that the hydrodynamic pressure is 
just sufficient to maintain a stationary wave against the resilient restoring forces, 
and so it corresponds to the condition of 'static divergence ' commonly pro- 
pounded in studies of panel flutter; but an important point revealed here is that 
(3.10) represents a stability limit only if the system is dissipative (cf. Landahl 
1962, p. 629). The value of 77: at which class C instability arises is greater 
than the value (3.10) by a fraction 5-l = p/ma, and so in cases where < is 
large the range of flow speeds over which class A instability can occur may be 
insignificant compared with the ' Kelvin-Helmholtz ' limit. For instance, it  is 
generally unlikely to be significant when the fluid is air, although one must still 
allow for the possibility of waves strongly coupled with an air flow in con- 
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sequence of having speeds and wavelengths close to those of Tollmien-Schlichting 
waves, which are of class A type.(see M3es 1963a). When the fluid is water, 
however, there is likely to be a considerable margin between the limiting con- 
ditions for class A and class C instability, so that the fomer is distinctly the 
crucial factor in determining a practical criterion of stabi1ity.j- 

Just as in the generalized case treated in $ 2, a neat physical interpretation of 
these results is forthcoming when the energy of the system is considered. A similar 
investigation was made by Landau (1962), but now a slightly different approach 
is necessary to account for the part which the pressure component proportional 
to S plays in the energy balance. Proceeding as in $ 2  we have to express the 
‘activation energy’ which, since k and X ar0 small, is practically the same as the 
total-energy level for a wave of amplitude 9 in a corresponding conservative 
system, i.e. with k = S = 0 (see equation (2.7)). For the solid the sum of the mean 
kinetic energy and mean potential energy per unit area of the interface is easily 
seen to be *a2(F + mc2) q 2  = *maZ(c; + c2) q 2 .  (3.11) 

An expression is established in the Appendix for the kinetic-energy loss W 
experienced by the fluid when the wave is created in the conservative system. 
Subtracting this from (3.11) we obtain the following expression for the total- 
energy level, which with c, substituted for c gives the activation energy in the 
non-conservative system : 

E = $pa(g(c; + c2) - (UE - c”} q 2 .  (3.12) 

When c 3 c, is eliminated by means of (3.9), this gives 

(3.13) 

where the alternative sign is to be chosen as in (3.9). [We note that the principle 
on which this derivation is based, namely that E is equivalent to the energy level 
in a corresponding conservative system, generalizes the interpretation of a 
result given in Landau’s paper. It appears that the second term in his equation 
(64) is a general expression for the activation energy, the contributory pro- 
perties of the solid and fluid being represented implicitly by the mechanical 
impedance of the interface in the presence of the flow.] 

The net rate of irreversible energy-conversion by the disturbance is d v / a t ,  
where CT = (pS- kma) (aq/at)  is the resultant normal stress in phase with the 
normal velocity of the interface. Thus we find that 

(3.14) 

This expression corresponds to (2.8), being the difference between the mean 
rate of energy-transfer due to the non-conservative part of the hydrodynamic 
pressure and the mean rate of dissipation. 

t It may be of interest to note the case of ‘internal waves’ at the interface between 
superposed fluids, the lower of which has a density pw only slightly in excess of the density 
p of the upper (see the remarks in brackets just below (3.5)). One then has 5 = p,/p = 1, 
so that the value @ = (5- 1) g/a at which class A instability can arise is approximately 
half‘ the value Ui = (5- {-’) g/cc for Kelvin-Helmholtz instability (cf. Lamb 1932, $232, 
equation (12)). 
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In  case (i) where u > ET, the activation energy E is positive according to (3.13), 
both for the waves with c = a and for those with c = b. Hence the waves grow 
in amplitude when dEjdt  > 0, which (3.14) shows to be when S > Ck. In keeping 
with the general arguments set out in $ 2 ,  these facts clearly explain the 
destabilizing effect of irreversible energy-transfer from the fluid (i.e. of Miles’s 
energy-transfer mechanism) and the stabilizing effect of dissipation. But note 
that d E / d t  is not the rate of accumulation of energy by the solid, although it is 
approximately when 5 % 1 (the ‘ Jeffreys-Miles approximation’). 

In case (ii) where 0 < u < ri, equation (3.13) shows that E is again positive 
for the class B waves with c = b, but is negative for the class A waves with c = a. 
Since growth of the latter waves requires that dE/d t  < 0, the reversed roles of 
irreversible energy- transfer and dissipation are thus explained in accord with 
the general interpretation of class A behaviour given in 0 2. 

The condition for incipience of class C instability is that u = 0, in which 
case E = 0 independently of the value of 9. This result reflects the essential 
physical mechanism of this type of instability as was explained in 3 2,  namely 
that a conservative exchange of energy takes place between the two parts of the 
system, so leaving the activation energy virtually unchanged. 

The antecedent of the material of this paper in the published work of Prof. 
Marten T. Landahl has already been made clear, and I wish to acknowledge also 
my indebtedness to him for inspiring discussions of the present subject. 

Appendix. The kinetic-energy level of an infinite flow disturbed by a 
travelling wave 

To find the energy level relative to the undisturbed state, the simplest course 
is to consider a perturbation from the plane boundary in the form 

y = q(z, t )  = f ( t )  efab-ct), (A 1) 
with a and c real, and allow the amplitude f ( t )  to increase over a finite time from 
zero up to its final steady value 9. For the present purpose the undisturbed flow 
may be taken to have a uniform velocity U,. The disturbed motion is therefore 
irrotational, and the velocity potential satisfying the kinematical condition at  
the boundary (A 1) is found to be 

Hence the pressure on the boundary is, by Bernoulli’s theorem, 

Averaged over x, the rate at which the fluid does work on the boundary (i.e. 
the rate at  which it losos energy) is 

dW/dt = -p,ay/at = - +Re{(p,)* (aylat)}, 
29 Fluid Mech. 16 
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where the parentheses refer to the complex amplitudes of the enclosed quantities 
and the asterisk denotes a complex copjugate. Thus we obtain 

It may be supposed that a steady wave is created by some process within the 
boundary, which starts with f = f = 0 and concludes with f -+ $, f -+ 0. Then by 
integration of (A 5) we find that the loss of kinetic energy by the fluid, per unit 
surface area of the boundary, is 

w = $a( u; - c2) $2, 

in agreement with Landahl (1962, equation (60)). 
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